Turing Machine

• A Turing machine is: $M = \langle \Sigma, Q, \Delta, q_0, b \rangle$

• Where
 – Σ – finite set of symbols (alphabet).
 – Q – finite set of states. Includes special states $acc(empt)$ and $rej(ect)$.
 – b – is a blank symbol (indicating an empty/blank cell).
 – $\Delta: Q \times (\Sigma \cup \{b\}) \rightarrow (\Sigma \times \{\leftarrow, \downarrow, \rightarrow\} \times Q)$
 with every state and letter (where a could be b) associate new letter, direction, and new state.
 We assume that acc and rej have no successors!
 – q_0 – is an initial state.

• Interesting questions about Turing machines:
 – Does it accept input x?
 – Does it halt on input x?
A function defines a relation between inputs and outputs.
Lecture 1: Introduction and Background

Doesn't quite work …
Computation vs. Reactivity

Computational Programs: Run in order to produce a final result on termination. Can be modeled as a black box.

Specified in terms of Input/Output relations.

Reactive Programs

Programs whose role is to maintain an ongoing interaction with their environments. Can be viewed as a green cactus (?)
Reactive Systems

• Systems whose main aim is to **interact** rather than **compute** (OS, driver, CPU, car controller).
• Main **complexity** is in maintaining **communication** with a **user** / another **program** / the **environment**.
• Reactive systems are notoriously **hard** to design.
• Major efforts are invested in **development** and **validation** of reactive systems.
The Requirement Language

• Correctness of **computational programs** is expressed as Hoare triples.

 \[\{P\}C\{Q\} \]

• Correctness of **reactive programs** is expressed as behavioral specifications:
 – The **behavior** of a system is a **sequence** of system states.
 – **Specification** should tell us when a **sequence** is good/bad.
 – We use **temporal logic**: connect states through time.
Validating Reactive Systems

• **Simulations:**
 – Run the system and check whether behavior satisfies specifications.

• **Model checking:**
 – Create a comprehensive model of the system and check whether all behaviors satisfy specifications.

• **Model checking research:**
 – Automatic construction of models.
 • Predicate extraction.
 • Heap analysis.
 • Counter-example guided abstraction refinement.
 – Techniques for model exploration.
 • Efficient enumerative graph exploration.
 • Symbolic representation of states.
 • Bounded model checking.
 – Specification.
 • Expressive specification languages.
 • Translation to model exploration.
Synthesis

• Developing systems is hard, expensive, and error prone.
• The common solution is extensive testing and verification.
• If we can verify, why not go directly from specification to correct-by-construction systems by synthesis?
• Church’s synthesis problem:
 Given a circuit interface specification and a behavioral specification:
 – Determine if there is an automaton that realizes the specification.
 – If the specification is realizable, construct an implementing automaton.
• Circuit interface – partition to inputs and outputs.
• Behavioral specification – description in first order logic.
Synthesis from Temporal Specifications

- Is it possible to realize this specification?
- The formula defines a relation between \(i: \mathbb{N} \rightarrow \{0,1\} \) and \(o_1, o_2: \mathbb{N} \rightarrow \{0,1\} \)
- We want a function.

\[
\begin{align*}
\forall t. \neg o_1(t) \lor \neg o_2(t) \\
\forall t. i(t) \rightarrow (\exists t' > t. o_1(t) \lor o_2(t)) \\
\forall t. o_1(t) \rightarrow (\exists t' < t. (i(t') \land \forall t' < t''. t' < t. (\neg o_1(t') \land \neg o_2(t')))) \\
\forall t. o_2(t) \rightarrow (\exists t' < t. (i(t') \land \forall t' < t''. t' < t. (\neg o_1(t') \land \neg o_2(t')))) \\
\forall t. o_1(t) \rightarrow (\forall t' > t. (\neg (o_1(t) \lor \exists t < t''. t'.o_2(t)))) \\
\forall t. o_1(t) \rightarrow (\forall t' > t. (\neg (o_2(t) \lor \exists t < t''. t'.o_1(t))))
\end{align*}
\]
Causality

\[o(0) \leftrightarrow (\exists t. i(t)) \]

• The relation \(R = \{(i, o) \mid i: \mathbb{N} \to \{0,1\}, o: \mathbb{N} \to \{0,1\}, o(0) \leftrightarrow (\exists t. i(t))\} \) is not empty.
• The function needs to be causal!
• It cannot be clairvoyant.
Adversarial

\[\forall t. i(t) \rightarrow \neg o(t) \]
\[\forall t. i(t) \rightarrow \exists t' > t. o(t) \]

• There are some input sequences for which this is possible.
• But not all!
• We want a function that can answer all input sequences.
 \[f: \{ i: \{0, ..., n\} \rightarrow \{0,1\} \mid n \in \mathbb{N} \} \rightarrow \{0,1\} \]
• Furthermore, for every \(i: \mathbb{N} \rightarrow \{0,1\} \) the unique \(o: \mathbb{N} \rightarrow \{0,1\} \) such that \(o(n) = f(i \mid \{0,...,n\}) \) for every \(n \in \mathbb{N} \) satisfies the specification.
Brief History

• Church’s problem [1965].
• Rabin introduces automata on infinite trees. Effectively, generalizing Büchi’s work on ω-automata to trees [1969].
• Büchi and Landweber define two-player games of infinite duration [1969].
• We now know that the two are effectively the same. These are still the techniques we use to solve the problem.
Modern Times

- **Pnueli** introduces linear temporal logic [1977].
- **Emerson and Clarke** and **Quielle and Sifakis** invent model checking [1981].
- **Emerson and Clarke** and **Manna and Wolper** ignore adversarial nature and propose reduction to satisfiability [1984].
- **Pnueli** and **Rosner** establish **LTL realizability** to be 2EXPTIME-complete.
 – This result established realizability and synthesis as highly intractable.
In these Lectures

- **Synthesis** as a game.
- Simple games (*safety*, *reachability*, Büchi).
- **LTL Synthesis** reduced to solution of **parity games**.
- Bypassing determinization:
 - Safraless approach.
 - Restricting the specification language.
- Practical issues with **synthesis**:
 - Implication problems.
 - Unrealizability.
 - Building hybrid controllers.
 - Distributed synthesis.
Lectures Outline

• Introduction
• Automata and Linear Temporal Logic
• Games and Synthesis
• General LTL Synthesis
• Bypassing Determinization
• Practical Issues with Synthesis
A More Formal Context

• A specification in linear temporal logic over input and output propositions.
• A system will be an automaton with output.
• Input and output are combined to create a sequence of assignments to propositions.
• All possible infinite paths over the automaton should satisfy the specification.
Linear Temporal Logic

• A set of propositions \((Prop)\) denoting the basic facts about the world. Set \(Prop\) is partitioned to inputs \(I\) and outputs \(O\).

• Linear Temporal Logic formulae are constructed as follows:
 \[\varphi ::= p || \varphi \land \varphi || \neg \varphi || O \varphi || E \varphi || \varphi U \varphi || \varphi S \varphi \]

• Other temporal formulae are derived:
 - \(\Diamond \varphi \equiv T U \varphi \) — Eventually.
 - \(\Box \varphi \equiv \neg \Diamond \neg \varphi \) — Always.
 - \(\varphi W \psi \equiv \varphi U \psi \lor \Box \varphi \) — Weak Until.
 - \(\Diamond \varphi \equiv T S \varphi \) — Previously.
 - \(\Box \varphi \equiv \neg \Diamond \neg \varphi \) — Historically.
 - \(\varphi B \psi \equiv \varphi S \psi \lor \Box \varphi \) — BackTo.
LTL Semantics

• A model for an LTL formula φ is an infinite sequence $\sigma = \sigma_0, \sigma_1, \ldots$ with a designated location $j \geq 0$.

• Each letter σ_i is a set of propositions true at time i.

• Formula φ holds over sequence σ in location $j \geq 0$, denoted $(\sigma, j) \models \varphi$, if:
 - If φ is a proposition $(\sigma, j) \models \varphi \iff \varphi \in \sigma_j$
 - $(\sigma, j) \models \neg \varphi \iff (\sigma, j) \not\models \varphi$
 - $(\sigma, j) \models \varphi_1 \lor \varphi_2 \iff (\sigma, j) \models \varphi_1 \text{ or } (\sigma, j) \models \varphi_2$
 - $(\sigma, j) \models \Box \varphi \iff (\sigma, j + 1) \models \varphi$
 - $(\sigma, j) \models \Diamond \varphi \iff j > 0 \text{ and } (\sigma, j - 1) \models \varphi$
 - $(\sigma, j) \models \varphi_1 \mathcal{U} \varphi_2 \iff \exists k \geq j . (\sigma, k) \models \varphi_2 \text{ and } \forall j \leq l < k . (\sigma, l) \models \varphi_1$
 - $(\sigma, j) \models \varphi_1 \mathcal{S} \varphi_2 \iff \exists k \leq j . (\sigma, k) \models \varphi_2 \text{ and } \forall j \geq l > k . (\sigma, l) \models \varphi_1$

• Derived:
 - $(\sigma, j) \models \lozenge \varphi \iff \exists k \geq j . (\sigma, k) \models \varphi$
 - $(\sigma, j) \models \square \varphi \iff \forall k \geq j . (\sigma, k) \models \varphi$
LTL Exercises

\[\square p \]

\[\square \Diamond p \]

\[\square (p \rightarrow \bigcirc (q \cup r)) \]

\[\square (p \rightarrow p \mathcal{W} q) \equiv \square (p \rightarrow (\bigcirc p \lor \bigcirc q)) \]

\[p \equiv \square (\Theta T \lor p) \]

\[\square (p \rightarrow \Diamond q) \]

\[\square (p \rightarrow \Theta (\neg p \mathcal{S} q)) \]

\[\Diamond (\neg \Theta T \land p) \]

\[\square (p \rightarrow \Diamond q) \equiv \square \Diamond \neg (\neg q \mathcal{S} p) \]

\[(p \mathcal{U} (q \mathcal{U} r)) \neq ((p \mathcal{U} q) \mathcal{U} r) \]
Automata

• Systems with discrete states.
• Formally, $A = \langle \Sigma, Q, \delta, q_0 \rangle$, where
 – Σ – a finite input alphabet.
 – Q – a finite set of states.
 – $\delta: Q \times \Sigma \to 2^Q$ – a transition function. Associates with state and an input letter a set of successor states.
 – q_0 – an initial state.
• An input word $w = \sigma_0, \sigma_1, \ldots$ is a sequence of letters from Σ.
• A run $r = q_0, q_1, \ldots$ over w is a sequence of states starting from q_0 such that for every $i \geq 0$ we have $q_{i+1} \in \delta(q_i, \sigma_i)$.
• An automaton is deterministic if for every $q \in Q$ and $\sigma \in \Sigma$ we have $|\delta(q, \sigma)| \leq 1$.
Mealy Machines

• Systems with discrete states.
• Formally, $M = \langle \Sigma, \Delta, Q, \delta, q_0, L \rangle$, where
 – Σ – a finite input alphabet.
 – Δ – a finite output alphabet.
 – Q – a finite set of states.
 – $\delta: Q \times \Sigma \rightarrow 2^Q$ – a transition function. Associates with every state and an input letter a set of successor states.
 – q_0 – an initial state.
 – $L: Q \times \Sigma \rightarrow \Delta$ – an output function. Associates with every transition an output letter.

• A run $r = q_0, q_1, \ldots$ over w is a sequence of states starting from q_0 such that for every $i \geq 0$ we have $q_{i+1} \in \delta(q_i, \sigma_i)$.
• The computation corresponding to $r = q_0, q_1, \ldots$ over w is $c = (\sigma_0, L(q_0, \sigma_0)), (\sigma_1, L(q_1, \sigma_1)), \ldots$.
Mealy Machines and LTL

• The set of computations of a machine $M = \langle \Sigma, \Delta, Q, \delta, q_0, L \rangle$ is denoted $\mathcal{L}(M)$.

• Assume $\Sigma = 2^J$ and $\Delta = 2^O$. So input letters are assignments to input propositions and outputs are assignments to output propositions.

• A machine M satisfies a formula φ, denoted $M \models \varphi$, if every computation in $\mathcal{L}(M)$ satisfies φ.

• Given an LTL formula φ over propositions $Prop = I \cup O$ we say that φ is realizable if there is a Mealy machine that satisfies it.

• Our task is going to be to find such a Mealy machine or say that it does not exist.

• We will mostly be interested in deterministic machines.
Bibliography

Lectures Outline

• Introduction
• Automata and Linear Temporal Logic
• Games and Synthesis
• General LTL Synthesis
• Bypassing Determinization
• Practical Issues with Synthesis
Realizability

• So, given a property φ and a partition $Prop = I \cup O$ find a system M such that $M \models \varphi$.
• For every possible input, decide on an output ...
• All paths through the machine should satisfy the property.
Arbiter_2

• Propositions $\mathcal{Prop} = \{r_1, r_2, g_1, g_2\}$, where $\mathcal{I} = \{r_1, r_2\}$ and $\mathcal{O} = \{g_1, g_2\}$.

• Requirements:
 – A_1: leave requests: $\Box(r_1 \land \neg g_1 \rightarrow \diamond r_1) \land \Box(r_2 \land \neg g_2 \rightarrow \diamond r_2)$
 – G_1: leave grants: $\Box(r_1 \land g_1 \rightarrow \diamond g_1) \land \Box(r_2 \land g_2 \rightarrow \diamond g_2)$
 – G_2: mutual exclusion: $\Box(\neg g_1 \lor \neg g_2)$
 – G_3: deliver and remove grants: $\Box \Diamond (g_1 \leftrightarrow r_1) \land \Box \Diamond (g_2 \leftrightarrow r_2)$

• Or together: $A_1 \rightarrow (G_1 \land G_2 \land G_3)$
What’s the idea?

• Think about control:
 – Some things are under our control.
 – Some things are not.
• We want to exercise our control so that to achieve certain goals.
• In some cases the environment is hostile.
• What we want:
 – Find a strategy that will guide our actions based on our view of the world.
• This leads to viewing the world as an opponent:
 – Exercise control so that uncontrollable events do not lead to damage.
• We model this as two-player games.
Example: Nim

• Some rows of matches.
• Every player removes in turn at least one match from one row.
• The one to remove last match wins.
• Can you win?
Whose in Control?

• We still use graphs with edges for transitions.
• Ownership is by using two types of nodes.
A Play
Arbiter

Arbiter

Client

Arbiter

Client
Lecture 2: Games and Synthesis

N. Piterman
Games

• Formally, a game is \(G = \langle V, V_0, V_1, E, \alpha \rangle \), where
 – \(V \) is a set of nodes.
 – \(V_0 \) and \(V_1 \) form a partition of \(V \).
 – \(E \subseteq V \times V \) is a set of edges.
• A play is \(\pi = v_0, v_1, \ldots \)
 – \(\alpha \) is a set of winning plays.
• A strategy for player \(i \) is a function \(f_i: V^* \cdot V_i \rightarrow V \) such that \((v, f_i(w \cdot v)) \in E \).
• A play \(\pi = v_0, v_1, \ldots \) is compatible with \(f_i \) if for every \(j \geq 0 \) such that \(v_j \in V_i \) we have \(v_{j+1} = f_i(v_0 \cdots v_j) \).
• A strategy for player 0 is winning if every play compatible with it is in \(\alpha \). A strategy for player 1 is winning if every play compatible with it is not in \(\alpha \).
• A node \(v \) is won by player \(i \) if she has a winning strategy for all plays starting from \(v \).
Control Predecessor

- In control it is easier to walk backwards.
Game Analysis
Control Predecessor (for P0)

- Start from an set of nodes $W \subseteq V$.
- We want to say:
 - The system can \textbf{force} the environment to W in \textbf{one move}.
- That is:
 - Nodes $v \in V_0$ for which some successor is in W.
 - Nodes $v \in V_1$ for which all successors are in W.
- Formally:

 $$cpre(W) = \{ v \in V_0 \mid \exists v' \in W. (v, v') \in E \} \cup$$
 $$\{ v \in V_1 \mid \forall v'. (v, v') \in E \rightarrow v' \in W \}$$
Control Predecessor (for P1)

• Start from an set of nodes $W \subseteq V$.
• We want to say:
 – The environment can force the system to W in one move.
• That is:
 – Nodes $v \in V_1$ for which some successor is in W.
 – Nodes $v \in V_0$ for which all successors are in W.
• Formally:
 \[
 cpre_1(W) = \{ v \in V_1 \mid \exists v' \in W. (v, v') \in E \} \cup \{ v \in V_0 \mid \forall v'. (v, v') \in E \rightarrow v' \in W \}
 \]
Let’s solve some games!
Reachability Games

- Check that P_1 can enforce $\lozenge \neg p$.

1. fix (new := $\neg p$)
2. new := new $\lor cpre_1(new)$
3. end // fix

Lemma. The algorithm computes the set of states winning for P_1 with objective $\lozenge p$.

Proof. Later.

$Attr_i(W)$ the set of nodes from which player i can force reaching W.
Safety Games

• Check that P_0 can enforce $\boxdot p$.
 1. $\text{fix } (\text{new} := p)$
 2. $\text{new} := \text{new} \land \text{cpre(new)}$
 3. $\text{end } // \text{fix}$

Lemma. The algorithm computes the set of states winning for P_0 with objective $\boxdot p$.

Proof. Later.
Safety vs Reachability Games

• Goals $\square p$ for $P0$ and $\Diamond \neg p$ for $P1$ are complementary.

1. fix ($\text{new} := p$) 1. fix ($\text{new} := \neg p$)
2. new := new $\land \ cpre\ (\text{new})$ 2. new := new $\lor \ cpre_1\ (\text{new})$
3. end // fix 3. end // fix
Büchi Games

• Check that P_0 can enforce $\Box \Diamond p$.

 1. fix (greatest := V)
 2. fix (least := $p \land cpre$(greatest))
 3. least := least $\lor cpre$(least);
 4. end // fix least
 5. greatest := least;
 6. end // fix greatest

Lemma. The algorithm computes the set of nodes winning for P_0 with objective $\Box \Diamond p$.

Games and Synthesis, EATCS Young Researchers School, Telč, Summer 2014
Strategy

• A strategy is the way of enforcing the goal.
• Let D be some memory domain and let d_0 be an initial memory value. Elements in the memory domain recall facts about the history of play so far.
• A strategy for player i is a function $f_i: V^* \cdot V_0 \rightarrow V$ such that $(v, f_i(w \cdot v)) \in E$.
• We look to replace V^* by some (finite) domain D. Then, instead of considering V we could consider $D \times V$.
• The strategy is replaced by two functions:
 – Move function: $f^m_i: D \times V_i \rightarrow V$ s.t. $(v, f(d, v)) \in E$.
 – Update function: $f^u_i: D \times V \rightarrow D$.
Safety Games

- Check that P_0 can enforce $\square p$.
 1. $\text{fix} (\text{new} := p)$
 2. $\text{new} := \text{new} \land \text{cpre}(\text{new})$
 3. $\text{end} \ // \text{fix}$
Proof

• Suppose that \(\text{new} \) is not empty.
 Consider \(v \in \text{new} \). Clearly, \(v \in p \). But also \(v \in cpre(\text{new}) \).
 If \(v \in V_0 \), then \(v \) has a successor \(w \) such that \(w \in \text{new} \).
 If \(v \in V_1 \), then for every successor \(w \) of \(v \) we know \(w \in \text{new} \).
• If there is a strategy s.t. every play compliant with it wins \(\square p \).
 Let \(\text{new}_0, \text{new}_1, \text{new}_2, \ldots \) be the series of approximations of \(\text{new} \).
 We prove by induction that for every \(v \) winning for \(P_0 \), \(v \in \text{new}_i \) for every \(i \).
 Clearly, \(v \in p \) implies \(v \in \text{new}_0 \).
 Assume every \(v \) winning for \(P_0 \) is in \(\text{new}_i \) for some \(i \).
 Consider \(v \in V_0 \) winning for \(P_0 \). Then, there is \(w \) such that \((v, w) \in E\) and \(w \) winning for \(P_0 \). Then, \(w \) in \(\text{new}_i \) and \(v \) in \(\text{new}_{i+1} \).
 Consider \(v \in V_1 \) winning for \(P_0 \). Then, for every \(w \) such that \((v, w) \in E\) we have \(w \) winning for \(P_0 \). Then, every \(w \) such that \((v, w) \in E\) is in \(\text{new}_i \).
 So \(v \) in \(\text{new}_{i+1} \).

1. fix (\(\text{new} := p \))
2. new := new \and cpre(new)
3. end // fix
Büchi Games

• Check that P_0 can enforce $\Box \Diamond p$.

 1. fix (greatest := V)
 2. fix (least := $p \land \text{cpre}(\text{greatest})$
 3. least := least $\lor \text{cpre}(\text{least})$
 4. end // fix least
 5. end // fix greatest
Proof (Control of Büchi –Soundness)

Suppose that greatest is not empty. For the fixpoint to terminate, the inner fixpoint starting from this value recomputes it.
Let least_0, least_1, least_2, ... be the sequence of values that least has through the computation of this last iteration.
Consider v ∈ greatest. Let i_0 be the index such that v ∈ least_i_0. By definition of cpre(·), P0 can force a successor w of v. But then, w ∈ least_i_1 for some i_1 < i_0. This shows that P0 can ensure to reach least_0 = p ∧ cpre(greatest). So it ensures a visit p.
But now least_0 = p ∧ cpre(greatest). So in the next step P0 forces least_j for some j and repeat this process.
By induction, P0 can enforce □□p.

1. fix (greatest := V)
2. fix (least := p ∧ cpre(greatest))
3. least := least ∨ cpre(least);
4. end // fix least
5. greatest := least;
6. end // fix greatest
Proof (Control of Büchi - completeness)

If there is a strategy \(f \) s.t. every play compliant with it wins \(\square \diamond p \).
Every node \(v \) from which \(f \) is winning remains in every approximation of the fixpoint \(\text{greatest} \): From \(v \) there is a maximum on the length of paths to reach \(p \) (König’s lemma). Prove by induction on the number of iterations in the first fixpoint that \(\text{win} \subseteq \text{greatest} \).
For \(\text{greatest}_0 = V \) this is clear. Assume \(\text{win} \subseteq \text{greatest}_i \). Then for every node \(v \in \text{win} \) it must be that \(v \in \text{least}_j \) for the distance to reach \(p \land \text{win} \).

1. \(\text{fix} (\text{greatest} := V) \)
2. \(\text{fix} (\text{least} := p \land \text{cpre}(\text{greatest}) \) \)
3. \(\text{least} := \text{least} \lor \text{cpre}(\text{least}); \)
4. \(\text{end} // \text{fix least} \)
5. \(\text{greatest} := \text{least}; \)
6. \(\text{end} // \text{fix greatest} \)
Symbolic vs Enumerative

• Algorithms so far have treated sets of states.
• But the proof established a ranking for the winning states – the number of steps until reaching the goal.
 \[r: V \rightarrow \mathbb{N} \cup \{\infty\} \]

• Can we compute the rank iteratively?
 – A path that visits more than \(|\neg p|\) nodes must be a losing loop.
 – Restrict rank to \(r: V \rightarrow \{0, \ldots, |\neg p|\} \cup \{\infty\} \).
 – \(\text{best}(v) = \begin{cases} \min_{(v,w) \in E} \text{rank}(w) & v \in V_0 \\ \max_{(v,w) \in E} \text{rank}(w) & v \in V_1 \end{cases} \)

– Rank is stable if:
 • \(v \in p \) and \(r(\text{best}(v)) < \infty \).
 • \(v \notin p \) and \(r(\text{best}(v)) < r(v) \).
Compute Rank Directly

1. \(r := \lambda v. 0 \)
2. while (\(\exists v. v \) not stable)
3. \(\quad \text{if} (v \in p) \)
4. \(\quad r(v) := \infty; \)
5. \(\quad \text{else} \)
6. \(\quad r(v) := best(v)+1; \)
7. end // while

• Each \(v \) can be increased at most \(|\neg p| \) times.
• By evaluating loop condition (and \(best \)) efficiently, all work can be restricted to \(O(|V| \cdot |E|) \).
What about Synthesis?

• Our goal is to construct a Mealy machine that realizes the specification.
 – A Mealy machine from every state reads input and answers with output.
• A node in the game corresponding to choice of input will be followed by node corresponding to choice of output.
• We can define a specialized game with nodes in $2^{I \cup O}$.
• We can define the winning condition with an LTL formula over $I \cup O$. A play naturally corresponds to a possible model.
• For a set of nodes W, define
 $$cpre(W) = \{v \mid \forall x \in 2^I. \exists y \in 2^O. (x \cup y) \in W\}$$
• When computing the set of winning states, check that for every $x \in 2^I$ there is $y \in 2^O$ such that $x \cup y$ is winning.
Further Specialize Strategy

• Let D be some memory domain and let d_0 be an initial memory value. Elements in the memory domain recall facts about the history of play so far.

• A strategy for player i is a function $f_i : (2^{\mathcal{J} \cup \mathcal{O}})^* \cdot 2^\mathcal{J} \to 2^\mathcal{O}$.

• We look to replace $(2^{\mathcal{J} \cup \mathcal{O}})^*$ by some (finite) domain D. Then, instead of considering $(2^{\mathcal{J} \cup \mathcal{O}})^*$ we could consider $D \times 2^{\mathcal{J} \cup \mathcal{O}}$.

• The strategy becomes $f_i : D \times 2^\mathcal{J} \to D \times 2^\mathcal{O}$
Consider a strategy $f_0 : D \times 2^j \to D \times 2^\omega$ and let $d_0 \in D$ be the initial memory value.

Construct the machine $M = \langle \Sigma, \Delta, D, \delta, d_0, L \rangle$ with:

$\Sigma = 2^j$

$\Delta = 2^\omega$

$\delta(d, i) = f_0(d, i) \downarrow_1$

$L(d, i) = f_0(d, i) \downarrow_2$

What’s the memory domain in the cases we’ve seen?
Winning \rightarrow Realizability

Consider a run $r = q_0, q_1, \ldots$ over $w = \sigma_0, \sigma_1, \ldots$ and the corresponding computation $c = (\sigma_0, L(q_0, \sigma_0)), (\sigma_1, L(q_1, \sigma_1)), \ldots$ of M.

i. For every $i \in 2^j$ there is $o \in 2^o$ s.t. (i, o) is winning.

ii. By f winning c satisfies the formula.

Realizability \rightarrow Winning

Take a machine M and use it to construct the winning strategy. A play in the game is a computation of the machine.
Memorize Intermediate Values

1. fix (greatest := V)
2. fix (least := $p \land cpre(greatest)$)
3. least := least \lor cpre(least)
4. end // fix least
5. end // fix greatest

1. fix (greatest := V)
2. $cY := 0;$
3. fix (least := $p \land cpre(greatest)$)
4. $y[cY] :=$ least;
5. least := least \lor cpre(least)
6. $cY := cY + 1;$
7. end // fix least
8. end // fix greatest
Construct the Realizing Machine

• Given $G = \langle 2^I \cup O \cup 2^I \times 2^I, 2^I \times 2^I, E, \square \diamond p \rangle$.

 $E = \{((i, o), (i, o, i')), ((i, o, i'), (i', o'))\}$

• Construct a $M = \langle 2^I, 2^O, 2^I \cup O, \delta, s_0, L \rangle$:

 $\delta((i, o), i') = \begin{cases}
 \{((i', o') \mid (i', o') \text{ is winning}\} & (i, o) \in p \\
 \{((i', o') \mid (i', o') \in y[\leq j]\} & (i, o) \in y[j + 1]
 \end{cases}$
Summary

• Starting from an LTL formula φ, construct the game $G = \langle 2^I \cup (2^I \times 2^J), 2^I \times 2^J, 2^I, E, \varphi \rangle$.

• Compute the set win.

• If for every $i \in 2^J$ there is $o \in 2^O$ such that $(i, o) \in \text{win}$ then declare φ realizable.

• Extract from the winning strategy a realizing Machine.

• But we only know to solve reachability and Büchi games.

• What about general LTL?
Bibliography

Lectures Outline

• Introduction
• Automata and Linear Temporal Logic
• Games and Synthesis
• General LTL Synthesis
• Bypassing Determinization
• Practical Issues with Synthesis
From Logic to Graphs?

How to embed the logical winning condition into the graph notation?
Nondeterministic Büchi Automata

• Systems with discrete states.
• Formally, \(A = \langle \Sigma, Q, \delta, q_0, \alpha \rangle \), where
 – \(\Sigma \) – a finite input alphabet.
 – \(Q \) – a finite set of states.
 – \(\delta : Q \times \Sigma \to 2^Q \) – a transition function. Associates with state and an input letter a set of successor states.
 – \(q_0 \) – an initial state.
 – \(\alpha \subseteq Q \) – a set of accepting states.

• An input word \(w = \sigma_0, \sigma_1, ... \) is a sequence of letters from \(\Sigma \).
• A run \(r = q_0, q_1, ... \) over \(w \) is a sequence of states starting from \(q_0 \) such that for every \(i \geq 0 \) we have \(q_{i+1} \in \delta(q_i, \sigma_i) \).
• A run is accepting if for infinitely many \(i \in \mathbb{N} \) we have \(q_i \in \alpha \).
• A word is accepted if some run over it is accepting.
• The language of \(A \), denoted \(\mathcal{L}(A) \), is the set of words accepted by \(A \).
From LTL to Büchi Automata

Theorem. Given an LTL formula φ we can construct a nondeterministic Büchi automaton N_φ such that $\mathcal{L}(M_\varphi) = \mathcal{L}(\varphi)$. The size of N_φ is exponential in the length of φ.

Intuitively, if $\text{sub}(\varphi)$ is the set of subformulas of φ, a state of N_φ corresponds to a set of subformulas that are true (in an accepting run).
Control with Automaton Observer

Visit finitely many not-p’s $\Diamond \square p$

Environment

System
NBW for $\Diamond \square p$

- NBW for $\varphi = \Diamond \square p$:

\[\begin{array}{c}
\text{p, } \neg \text{p} \\
\text{p, p}
\end{array} \]
Nondeterminism is bad
What went wrong?

• The automaton is **nondeterministic**.
• It makes **predictions** regarding the **future** and **aborts** runs that do not match these **predictions**.
• In the context of **games** **nondeterminism** is added as choice of one side:
 – If the **system** resolves **nondeterminism**, it has to find a solution that matches all possible futures.
 – If the **environment** resolves **nondeterminism**, the system must force all runs to be accepting.
Solution: Determinism

- If the automaton were deterministic, there would be no added choice!
- We create a synchronous parallel composition of the automaton with the game.
- Solve the resulting game.
- Extract system from winning strategy.
Nondeterministic parity Automata

• Systems with discrete states.
• Formally, $A = \langle \Sigma, Q, \delta, q_0, \alpha \rangle$, where
 – Σ – a finite input alphabet.
 – Q – a finite set of states.
 – $\delta: Q \times \Sigma \to 2^Q$ – a transition function. Associates with state and an input letter a set of successor states.
 – q_0 – an initial state.
 – $\alpha: Q \to \mathbb{N}$ – a ranking of states.

• An input word $w = \sigma_0, \sigma_1, \ldots$ is a sequence of letters from Σ.
• A run $r = q_0, q_1, \ldots$ over w is a sequence of states starting from q_0 such that for every $i \geq 0$ we have $q_{i+1} \in \delta(q_i, \sigma_i)$.
• A run is accepting if for the minimum rank to occur infinitely often is even.
• The language of A, denoted $\mathcal{L}(M)$, is the set of words accepted by A.
Synchronous Composition of Games

• Consider a game $G = \langle V, V_0, V_1, E, \varphi \rangle$ and a deterministic (with respect to entire alphabet Σ) automaton $A_\varphi = \langle \Sigma, D, \delta, d_0, \beta \rangle$.

• Their synchronous parallel composition $(G \parallel A_\varphi)$ is the game, $\hat{G} = \langle \hat{V}, \hat{V}_0, \hat{V}_1, \hat{E}, \gamma \rangle$ where:
 - $\hat{V} = D \times V$ – a new node holds a game node and an automaton state..
 - $\hat{E} = \{(d, v), (d', v') \mid (v, v') \in E \text{ and } d' = \delta(d, L(v))\}$ – the transitions of the automaton are updated.
 - $\gamma(d, v) = \beta(d)$ – acceptance only considers the acceptance of the automaton.

• The results is a parity game.
Deterministic Automata Work!

Theorem. \(P_0 \) wins \(G \) with winning condition \(\varphi \) iff \(P_0 \) wins \(G \parallel A_\varphi \), where \(A_\varphi \) is a deterministic automaton for \(\varphi \).

⇒ If \(P_0 \) wins \(G \) all she has to do in \(G \parallel A_\varphi \) is to use the same strategy. Every play in \(G \parallel A_\varphi \) corresponds to a play in \(G \) and the unique run of \(A_\varphi \) that reads this play. But the play satisfies \(\varphi \), so the run must be accepting. So the play in \(G \parallel A_\varphi \) is winning for \(P_0 \) as well.

⇐ If \(P_0 \) wins \(G \parallel A_\varphi \) she can use the states of \(A_\varphi \) as (part of) the memory in \(G \). She will then be able to use the winning strategy from \(G \parallel A_\varphi \). Now, a play in \(G \) corresponds to an accepting run of \(A_\varphi \). But then the play satisfies \(\varphi \), which means that \(P_0 \) wins.
Two tiny issues ...

- How do we get a deterministic parity automata for LTL?
- How do we solve a parity games?
Deterministic Automata

- Well, the answer is simple: construct a nondeterministic automaton and determine it!
- Starting from an automaton with n states:
 - Create an automaton with $O((n!)^2)$ states and $2n$ rank.
- Wolfgang showed one such construction.
Solving parity Games

Func main()
1. Return even_parity(0, ∅);
End // Func main

Func even_parity(i, win)
1. fix (greatest := V)
2. greatest := win V (v|α(v) = i} ∧ cpre(greatest))
3. if (i!=max)
4. greatest := odd_parity(i+1, greatest)
5. end // fix greatest
6. Return greatest;
End // Func even_parity

Func odd_parity(i, win)
1. fix (least := ∅)
2. least:= win V (v|α(v) ≥ i} ∧ cpre(greatest))
3. if (i!=max)
4. least := even_parity(i+1, least)
5. end // fix least
6. Return least;
End // Func odd_parity
Proof (Soundness)

Suppose that \textit{win} is not empty. Have the intermediate least fixpoint approximations: \(\text{least}^p_0, \text{least}^p_1, \text{least}^p_2, \ldots\) for an odd parity \(p\).

Consider \(v \in \text{win}\). Let \(i_1, i_3, \ldots, i_m\) be the indices such that \(v \in \text{least}^j_{i_j}\). By definition of \(\text{cpre}(\cdot)\), \(P_0\) can force a successor \(w\) of \(v\).

But then, either (a) for some even \(j\) we have \(v \in \alpha(j)\) and \(w\) has \(i'_1, i'_3, \ldots, i'_m\) such that for \(j' < j\) we have \(i'_j \leq i'_j\), or (b) there is some \(j\) such that \(w\) has \(i'_1, i'_3, \ldots, i'_m\), for \(j' < j\) we have \(i'_j = i'_j\), and for \(j\) we have \(i'_j < i'_j\).

Consider an infinite path and what happens to these numbers. There must be an even priority that is “reset” infinitely often, showing that \(P_0\) wins.
Enumerative Again

- The proof established a ranking for the winning states – the odd nodes until an even node.
 \[r: V \rightarrow \mathbb{N}^{\text{odd}} \cup \{\infty\} \]

- Can we compute the rank iteratively?
 - For odd \(j \) a path that visits more than \(|\alpha^{-1}(j)| \) nodes must be a losing loop.
 - Restrict rank to \(r: V \rightarrow (|\alpha^{-1}(1) \times \cdots \times |\alpha^{-1}(m)|) \cup \{\infty\} \).
 - \(\text{best}(v) = \min_{(v,w) \in E} \text{rank}(w) \quad v \in V_0 \)
 - \(\text{best}(v) = \max_{(v,w) \in E} \text{rank}(w) \quad v \in V_1 \)

- Rank is stable if:
 - \(\alpha(v) \) is even and \(r(\text{best}(v)) \leq_{\alpha(v)} r(v) \).
 - \(\alpha(v) \) is odd and \(r(\text{best}(v)) <_{\alpha(v)} r(v) \).
Compute Rank Directly

1. $r := \lambda v. (0,0,\ldots,0)$
2. while ($\exists v. v$ not stable)
3. \hspace{1em} $r(v) := \text{inc}_{\alpha(v)}(\text{best}(v))$;
4. end \ // \ while

- Each v can be increased at most $|V|^{|\text{odd}|}$ times.
- By evaluating loop condition (and best) efficiently, all work can be restricted to $|V|^{|\text{odd}|} \cdot |E|$.
- By counting better the exponent can be halved.
To Summarize

- Start with a game structure G with winning condition φ.
- Construct a deterministic automaton A_φ for φ.
- Construct the product $G \parallel A_\varphi$.
- Solve the game $G \parallel A_\varphi$.
- Construct a winning strategy for $G \parallel A_\varphi$.
- Construct from the winning strategy a Mealy machine realizing φ.

The problem is 2EXPTIME-complete.
- Determinization does not scale.
- More practice required for solution of parity games (Martin?).

$|\varphi| = n$

$|A_\varphi| = 2^{O(n \log n)}$

$|\alpha| = 2^n$

$2^{O(n^2 \log n)}$
Bibliography

Lectures Outline

• Introduction
• Automata and Linear Temporal Logic
• Games and Synthesis
• General LTL Synthesis
• Bypassing Determinization
• Practical Issues with Synthesis
Two Ways to Avoid Determinization

• Replace by counting:
 – Search for bounded strategy.
 – Express winning through universal co-Büchi automata.
 – Limited determinization through counting.

• Concentrate on simpler specifications:
 – Both system and environment are Büchi automata.
 – Enforce “deterministic” specification.
 – State-space exponential. Exponent linear.
A New Look on Winning Conditions

- Formally, a game is \(G = \langle V, V_0, V_1, E, \alpha \rangle \), where
 - \(V \) is a set of nodes.
 - \(V_0 \) and \(V_1 \) form a partition of \(V \).
 - \(E \subseteq V \times V \) is a set of edges.
- A play is \(\pi = v_0, v_1, ... \)
 - \(\alpha \) is a set of winning plays:
 - Safety: \(\alpha = W^\omega \) for some \(W \subseteq V \).
 - Büchi: \(\alpha = (V^*W)^\omega \) for some \(W \subseteq V \).
 - LTL: \(\alpha = \{ \pi \in V^\omega \mid \pi \models \varphi \} \).
 - NBW: \(\alpha = \langle V, Q, \delta, q_0, \beta \rangle \), where \(\delta: Q \times V \to 2^V \) and \(\beta \subseteq Q \).
 - DPW: \(\alpha = \langle V, Q, \delta, q_0, c \rangle \), where \(\delta: Q \times V \to V \) and \(c: Q \to \mathbb{N} \).
 - UCW: \(\alpha = \langle V, Q, \delta, q_0, \beta \rangle \), where \(\delta: Q \times V \to V \) and \(\beta \subseteq Q \).
Universal co-Büchi Automata

• Systems with discrete states.
• Formally, $A = \langle \Sigma, Q, \delta, q_0, \alpha \rangle$, where
 – Σ – a finite input alphabet.
 – Q – a finite set of states.
 – $\delta: Q \times \Sigma \rightarrow 2^Q$ – a transition function. Associates with state and an input letter a set of successor states.
 – q_0 – an initial state.
 – $\alpha \subseteq Q$ – a set of rejecting states.
• An input word $w = \sigma_0, \sigma_1, \ldots$ is a sequence of letters from Σ.
• A run $r = q_0, q_1, \ldots$ over w is a sequence of states starting from q_0 such that for every $i \geq 0$ we have $q_{i+1} \in \delta(q_i, \sigma_i)$.
• A run is accepting if for finitely many $i \in \mathbb{N}$ we have $q_0 \in \alpha$.
• A word is accepted if all runs over it is accepting.
• The language of A, denoted $\mathcal{L}(A)$, is the set of words accepted by A.
UCW for $\Box \Diamond \neg p$

- UCW for $\varphi = \Box \Diamond \neg p$:
UCW for $\Diamond \Box p$

- UCW for $\varphi = \Diamond \Box p$:
Runs of UCW on (W.P.B.) Mealy Machines

• Consider a UCW \(U_\varphi = \langle 2^\mathbb{J} \cup \mathbb{O}, Q, \delta, q_0, \alpha \rangle \), where \(|Q| = n\).

• Suppose we get a machine \(M = \langle 2^\mathbb{J}, 2^\mathbb{O}, S, \rho, s_0, L \rangle \) such that \(\mathcal{L}(M) \subseteq \mathcal{L}(\varphi) \), where \(|S| = m\).

• We run \(U \) on words “produced” by \(M \). What is the maximum number of visits to \(\alpha \)?

 – A word produced by \(M \) corresponds to a run \(r = s_0, s_1, \ldots \) on \(w = \sigma_0, \sigma_1, \ldots \) by taking \(c = (\sigma_0, L(s_0, \sigma_0)), (\sigma_1, L(s_1, \sigma_1)), \ldots \).

 – Let the run of \(U_\varphi \) on \(c \) be \(\pi = q_0, q_1, \ldots \). Here, \(q_{i+1} \in \delta(q_i, (\sigma_i, L(s_i, \sigma_i))) \).

 – If the number of visits to \(\alpha \) is more than \(n \cdot m \), there must exist \(i \) and \(j \) such that \(q_i = q_j, s_i = s_j \), and \(q_i \in \alpha \).

 – But then \(q_0, \ldots, (q_i, \ldots, q_{j-1})^\omega \) is a rejecting run of \(U_\varphi \) on \((\sigma_0, L(s_0, \sigma_0)), \ldots, ((\sigma_i, L(s_i, \sigma_i)), \ldots, (\sigma_{j-1}, L(s_{j-1}, \sigma_{j-1})))^\omega \).
Bounded Runs of UCW

A UCW U accepts all computations of M iff for every computation of M every run of U visits at most $|U| \cdot |M|$ rejecting states.

⇒ Can’t be any other way (as we’ve seen).

⇐ Well …
 The number of visits to rejecting states is finite …
Specialized (Bounded) Determinization

• Follow all runs simultaneously.
• For each state count the number of visits to rejecting states it has seen so far.
• If number of visits exceeds maximum – abort.
Consider a UCW $U = \langle \Sigma, Q, \delta, q_0, \alpha \rangle$. Determinize U for bound m by taking $D = \langle \Sigma, F, \rho, f_0, \beta \rangle$, where:

- $F = \{ f: Q \to (\{0, \ldots, m\} \cup \{\bot, \infty\}) \}$

- $f_0(q) = \begin{cases} 0 & q = q_0 \\ \bot & \text{Otherwise} \end{cases}$

- $\rho(f, \sigma)(q) = \begin{cases} \max\{q'|q \in \delta(q', \sigma)\} f(q') & q \notin \alpha \\ \max\{q'|q \in \delta(q', \sigma)\} 1 + f(q') & q \in \alpha \end{cases}$

Here $\forall v. \bot \leq v$, $m + 1 = \infty$ and $\infty + 1 = \infty$

- β is a safety condition: $\{ f \in F | \forall q \in Q. f(q) < \infty \}$
Synchronous Composition

• Consider a game $G = \langle V, V_0, V_1, E, \varphi \rangle$. Let $D_\varphi = \langle \Sigma, D, \delta, d_0, \beta \rangle$ be the safety automaton constructed from U_φ for size m.
• Their synchronous parallel composition $(G \parallel D_\varphi)$ is the safety game, $\hat{G} = \langle \hat{V}, \hat{V}_0, \hat{V}_1, \hat{E}, \gamma \rangle$ where:
 – $\hat{V} = D \times V$ – a new node holds a game node and an automaton state..
 – $\hat{E} = \{(d, v), (d', v') \mid (v, v') \in E \text{ and } d' = \delta(d, L(v))\}$ – the transitions of the automaton are updated.
 – $\gamma(d, v) = \beta(d)$ – acceptance only considers the acceptance of the automaton.
Deterministic Automata Work (again)!

Theorem. If there is a machine of size m realizing φ then P0 wins $G \parallel D_\varphi$, where D_φ is the deterministic automaton obtained by bounded determinization for size m.

⇒ If there is a machine of size m realizing φ then this machine can be used as memory for winning G (with aim φ). All plays in the resulting game satisfy φ. The runs of U_φ on them cannot visit more than m rejecting states. Adding the states of D_φ alongside does not change their behavior. This is a winning strategy in $G \parallel D_\varphi$.

Games and Synthesis, EATCS Young Researchers School, Telč, Summer 2014
Deterministic Automata Work (again)!

Theorem. If P_0 wins $G \parallel D_\varphi$, where D_φ is the deterministic automaton obtained by bounded determinization for size m then

⇒ If there is a machine of size m realizing φ then this machine can be used as memory for winning G (with aim φ). All plays in the resulting game satisfy φ. The runs of U_φ on them cannot visit more than m rejecting states. Adding the states of D_φ alongside does not change their behavior. This is a winning strategy in $G \parallel D_\varphi$.
Theorem. If P0 wins $G \parallel D_\varphi$, where D_φ is the deterministic automaton obtained by bounded determinization for size m, then φ is realizable.

⇒ Use the states of D_φ as memory for G with winning condition φ. Every path is accepted by D_φ, which implies that it satisfies φ.
Summarize

• Start from an LTL formula φ.
• Obtain a UCW U_φ for φ.
• Construct D_φ for increasing sizes.
• If one of the games $G \parallel D_\varphi$ is winning for P0 the formula is realizable.
 – Where do I get a UCW U_φ for φ?
 – When do I stop?
From LTL to co-Büchi Automata

Theorem. Given an LTL formula φ we can construct a universal co-Büchi automaton U_φ such that $\mathcal{L}(U_\varphi) = \mathcal{L}(\varphi)$. The size of U_φ is exponential in the length of φ.

Construct the nondeterministic Büchi automaton $N_{\neg \varphi}$. Think about $N_{\neg \varphi}$ as a universal co-Büchi automaton U_φ.

Games and Synthesis, EATCS Young Researchers School, Telč, Summer 2014
How far should I go?

• We had a different solution with deterministic automaton:

Theorem. P0 wins G with winning condition φ iff P0 wins $G \parallel A_{\varphi}$, where A_{φ} is a deterministic automaton for φ.

• In case that φ is realizable there is a machine realizing it with at most $|G| \times |A_{\varphi}|$ states.
• We can use $|G| \times |A_{\varphi}|$ as the bound (but start searching with smaller bounds ...).
Advantages

• Simple structure of states.
 – Replace the tree structure over sets of states by a function from states to ranks.
 – Determinization is a challenge for implementation.

• Safety games compared with parity games.
 – Solution of safety games is much simpler.
 – Exact complexity and practical solving of parity games are interesting open problems.

• Search for small machines first.
 – By increasing the bound gradually we can ensure to find small implementations first (and compute less).
 – Information from failed search for small sizes can be reused for searching for larger sizes.
 – Worst case complexity is as the general technique.
Two Ways to Avoid Determinization

• Replace by counting:
 – Search for bounded strategy.
 – Express winning through universal co-Büchi automata.
 – Limited determinization through counting.

• Concentrate on simpler specifications:
 – Both system and environment are Büchi automata.
 – Enforce “deterministic” specification.
 – State-space exponential. Exponent linear.
Take Another Look at Machines

• A machine $M = \langle \Sigma, \Delta, Q, \delta, q_0, L \rangle$, where
 – $\Sigma = 2^j$ – a finite input alphabet.
 – $\Delta = 2^\mathcal{O}$ – a finite output alphabet.
 – $Q = 2^X$ – a finite set of states.
• Express as an LTL formula over $\mathcal{I} \cup \mathcal{O} \cup X$:
 – q_0:
 $$\theta = \forall x \in 2^j (x, L(q_0, x)) \land \delta(q_0, x)$$
 – $\delta: Q \times \Sigma \to 2^Q$:
 $$\rho = \left(\land_{q \in Q, x \in 2^j} (q \land \Box x \rightarrow \Box L(q, x) \lor q \in \delta(q, \sigma) \Box q) \right)$$
• We may want to add some “good things” happen often enough:
 $$\land_i \Box \Diamond (\forall q \in G_i q)$$
• Overall:
 $$\theta \land \Box \rho \land \land_i \Box \Diamond (\forall q \in G_i q)$$
Arbiter

\[r_1, r_2, \ldots, r_n \rightarrow g_1, g_2, \ldots, g_n \]

Client

\[r_i, g_i, \overline{r_i}, \overline{g_i} \]
Translate to LTL

• Variables:
 \(I = \{ r_1, r_2 \} \)
 \(O = \{ g_1, g_2 \} \)

• Initially:
 \(\neg r_1 \land \neg r_2 \land \neg g_1 \land \neg g_2 \)

• Transition:
 \[
 \begin{align*}
 & (-r_1 \land \neg g_1 \land \Box r_1 \rightarrow (r_2 \leftrightarrow \Box r_2)) \\
 & (r_1 \land g_1 \land \Box \neg r_1 \rightarrow (r_2 \leftrightarrow \Box r_2)) \\
 & (-r_2 \land \neg g_2 \land \Box r_2 \rightarrow (r_1 \leftrightarrow \Box r_1)) \\
 & (r_2 \land g_2 \land \Box \neg r_2 \rightarrow (r_1 \leftrightarrow \Box r_1)) \\
 & (-g_1 \lor \neg g_2) \\
 & (g_1 \neq \Box r_1 \land (g_2 \leftrightarrow \Box g_2)) \\
 & (g_2 \neq \Box r_2 \land (g_1 \leftrightarrow \Box g_1))
 \end{align*}
 \]

• Good things:
 \(\Box \Diamond (g_1 = r_1) \land \Box \Diamond (g_2 = r_2) \)
Separate to Assumptions and Guarantees

Environment:
• Initially:
 \(\neg r_1 \land \neg r_2 \)
• Transition:
 \[
 (\neg r_1 \land \neg g_1 \land \bigcirc r_1 \rightarrow (r_2 \leftrightarrow \bigcirc r_2)) \lor \\
 (r_1 \land g_1 \land \bigcirc \neg r_1 \rightarrow (r_2 \leftrightarrow \bigcirc r_2)) \lor \\
 (\neg r_2 \land \neg g_2 \land \bigcirc r_2 \rightarrow (r_1 \leftrightarrow \bigcirc r_1)) \lor \\
 (r_2 \land g_2 \land \bigcirc \neg r_2 \rightarrow (r_1 \leftrightarrow \bigcirc r_1)) \lor \\
 (r_1 \leftrightarrow \bigcirc r_1) \land (r_2 \leftrightarrow \bigcirc r_2)
 \]

System:
• Initially:
 \(\neg g_1 \land \neg g_2 \)
• Transition:
 \[
 (\neg g_1 \lor \neg g_2) \land \\
 \left((g_1 \neq \bigcirc r_1 \land (g_2 \leftrightarrow \bigcirc g_2)) \right) \lor \\
 \left(g_2 \neq \bigcirc r_2 \land (g_1 \leftrightarrow \bigcirc g_1) \right) \lor \\
 \left(g_1 \leftrightarrow \bigcirc g_1 \right) \land \left(g_2 \leftrightarrow \bigcirc g_2 \right)
 \]
• Good things:
 \(\Box \Diamond (g_1 = r_1) \land \Box \Diamond (g_2 = r_2) \)
The Goal for Synthesis

\[(\theta_e \land \Box \rho_e) \rightarrow (\theta_s \land \Box \rho_s \land (\land_i \Box \Diamond G_i))\]

• This still does not look very simple …
• Can we do anything with the bits \(\theta_e, \theta_s, \Box \rho_e,\) and \(\Box \rho_s\)?
 – \(\theta_s\) can be used to restrict the initial moves of \(P0:\)
 For every initial input there is initial output satisfying \(\theta_s\) …
 – \(\Box \rho_s\) can be used to restrict the transitions of \(P0.\)
 – What if we use \(\theta_e\) and \(\Box \rho_e\) to restrict the moves of \(P1?\)
Lecture 4: Bypassing Determinization

N. Piterman

Games and Synthesis, EATCS Young Researchers Sch
What’s left?

$$(\theta_e \land \Box \rho_e) \rightarrow (\theta_s \land \Box \rho_s \land (\land_i \Box \Diamond G_i))$$

- This is slightly more complicated than response. We call it generalized Büchi.

Büchi:
1. fix (greatest := V)
2. fix (least := $G \land cpre$ (greatest))
3. least := least \lor cpre (least);
4. end // fix least
5. greatest := least;
6. end // fix greatest

Generalized Büchi:
1. fix (greatest := V)
2. foreach (G_i)
3. fix (least := $G_i \land cpre$ (greatest))
4. least := least \lor cpre (least);
5. end // fix least
6. greatest := least;
7. end // foreach
8. end // fix greatest
Proof (Generalized Büchi–Soundness)

Suppose that greatest is not empty. For the fixpoint to terminate, for each G_i the inner fixpoint fixpoint starting from this value recomputes it.

Let $\text{least}_0^i, \text{least}_1^i, \text{least}_2^i, \ldots$ be the sequence of values that least has through the computation of this last iteration for G_i.

Consider $v \in \text{greatest}$. Let j_0 be the index such that $v \in \text{least}_{j_0}^i$. By definition of $\text{cpre}(\cdot)$, P_0 can force a successor w of v. But then, $w \in \text{least}_{j_1}^i$ for some $j_1 < j_0$. This shows that P_0 can ensure to reach $\text{least}_0^i = G_0 \land \text{cpre}(\text{greatest})$. So it ensures a visit G_i.

But now $\text{least}_0^i = G_i \land \text{cpre}(\text{greatest})$. So next P_0 forces least_{k+1}^i, for some k and repeat this process.

By induction, P_0 can enforce $\land_i \Box \Diamond G_i$.

Generalized Büchi:
1. fix (greatest := V)
2. foreach (G_i)
3. fix (least := $G_i \land \text{cpre}(\text{greatest})$
4. least := least \lor cpre(least)
5. end // fix least
6. greatest := least
7. end // foreach
8. end // fix greatest
Proof (Control of Büchi - completeness)

If there is a strategy f s.t. every play compliant with it wins $\land_i \square \Diamond G_i$.

Every node v from which f is winning remains in every approximation of the fixpoint greatest:

Consider some G_i. From v there is a maximum on the length of paths to reach $G_i \land \text{cpre}(\text{greatest})$ (König’s lemma).

Prove by induction on the number of iterations in the first fixpoint that $\text{win} \subseteq \text{greatest}$.

For $\text{greatest}_0 = V$ this is clear. Assume $\text{win} \subseteq \text{greatest}_i$. Then for every node $v \in \text{win}$ it must be that $v \in \text{least}_j$ for the distance to reach $G_i \land \text{cpre}(\text{win})$.

Generalized Büchi:
1. fix (greatest := V)
2. foreach (G_i)
3. fix (least := $G_i \land \text{cpre}(\text{greatest})$
4. least := least $\lor \text{cpre}(\text{least})$
5. end // fix least
6. greatest := least;
7. end // foreach
8. end // fix greatest
Oops …

• The clients do not release the bus!
• It’s not only the system that has to do good things.
• The environment has to do good things as well!
• We need: $\bigwedge_j \Box \Diamond A_j \rightarrow \bigwedge_i \Box \Diamond G_i$
• We call this Generalized Reactivity (1) or GR(1).
Solving GR(1) Games

Generalized Reactivity (1):
1. fix (greatestZ := V)
2. foreach (Gi)
3. fix (leastY := Gi ∧ cpred(greatestZ))
4. leastY := leastY ∨ cpred(leastY);
5. foreach (Ai)
6. fix (greatestX := V)
7. greatestX := least X (¬Aj ∧ cpred(greatestX))
8. end // fix greatestX
9. leastY := leastY ∨ greatestX;
10. end // foreach A
11. end // fix leastY
12. greatestZ := leastY;
13. end // foreach G
14. end // fix greatestZ
Proof (Control of GR(1) – Soundness)

Suppose that greatest\(Z\) is not empty. For each \(G_i\) the inner fixpoint starting from greatest\(Z\) recomputes greatest\(Z\).

Let least\(Y^i_0\), least\(Y^i_1\), least\(Y^i_2\), ... be the sequence of values that least\(Y\) has during the last iteration. Each least\(Y^i_k\) is equal to the union of greatest\(X^i_{k,1}\), greatest\(X^i_{k,2}\), ..., greatest\(X^i_{k,m}\).

Consider \(v \in\) greatest\(Z\). Let \(k_0\) be the minimal index such that \(v \in\) least\(Y^i_{k_0}\) and let \(j_0\) be the minimal such that \(v \in\) greatest\(X^i_{k_0,j_0}\).

By definition of \(cpre\), P0 can control to reach in one move greatest\(X^i_{k_1,j_1}\) such that either (A) \(k_1 < k_0\) or (B) \(k_1 = k_0\) and \(j_1 = j_0\). In case (B), we know that \(v \models \neg A_{j_0}\). So by playing this strategy, P0 can ensure that either some \(A\) is visited finitely often, or reach least\(Y^i_0 \land cpre(greatestZ)\).

By repeating the same for all \(G_i\) P0 can enforce \((\bigwedge_j \square \Diamond A_j) \rightarrow (\bigwedge_i \square \Diamond G_i)\).
Proof (Control of GR(1) – completeness sketch)

If there is a strategy f s.t. every play compliant with it wins

$$(\land_j \Box \Diamond A_j) \rightarrow (\land_i \Box \Diamond G_i)$$

Every v from which f is winning remains in every approximation of the fixpoint $greatestZ$:

As before, consider some G_i. From v there is a maximum on the number of visits to A_j before arriving to $G_i \land cpre(\text{win})$ (König’s lemma).

Prove by induction on the number of iterations in the first fixpoint that $\text{win} \subseteq greatestZ$.

For $greatestZ_0 = V$ this is clear. Assume $\text{win} \subseteq greatestZ_l$. Then for every $v \in \text{win}$ it must be that $v \in leastY^i_k$ for some k.

1. fix ($greatestZ := V$
2. foreach (G_i
3. fix ($leastY := G_i \land cpre(greatestZ)$
4. leastY := leastY $\lor cpre(leastY)$
5. foreach (A_j
6. fix ($greatestX := V$
7. greatestX := leastY $\lor cpre(greatestX)$
8. end // fix greatestX
9. leastY := leastY $\lor greatestX$
10. end // foreach A_j
11. end // fix leastY
12. greatestZ := leastY
13. end // foreach G_i
14. end // fix greatestZ

Games and Synthesis, EATCS Young Researchers School, Telč, Summer 2014

N. Piterman
Ranking (again)

• The proof established a set of rankings for the winning states – the number of assumptions met until reaching the goal.
 \[r_i : V \rightarrow (\mathbb{N} \times |\{A_j\}|) \cup \{\infty\} \]

• Can we compute the rank iteratively?
 – A path that visits more than \(|A_j|\) nodes must be a losing loop.
 – Restrict rank to \(r_i : V \rightarrow (\{0, \ldots, \max|A_j|\} \times |\{A_j\}|) \cup \{\infty\} \).
 – \(\text{best}_i(v) = \begin{cases} \min_{(v,w)\in E} r_i(w) & v \in V_0 \\ \max_{(v,w)\in E} r_i(w) & v \in V_1 \end{cases} \)
 – Rank is stable if:
 • \(v \in G_i \) and \(\forall i. r_i(\text{best}_i(v)) < \infty \).
 • \(v \notin G_i, v \in A_j, r_i(v) = (l,j), \) and \(r_i(\text{best}_i(v)) < r_i(v) \).
 • \(v \notin G_i, v \notin A_j, r_i(v) = (l,j), \) and \(r_i(\text{best}_i(v)) \leq r_i(v) \).
Compute Rank Directly

1. $r_i := \lambda v. 0$
2. while ($\exists v, i. r_i(v)$ not stable)
3. \[r_i(v) := \text{inc}_i(\text{best}(v)) \]
4. end // while

- Each v in each rank can be increased at most $|V||\{A_i\}|$ times.
- By evaluating loop condition (and best) efficiently, all work can be restricted to $O(|\{A_i\}| \cdot |\{G_i\}| \cdot |V| \cdot |E|)$.

Memorizing Intermediate Values

Generalized Reactivity (1):
1. fix (greatestZ := V)
2. foreach (Gi)
3. cY := 0;
4. fix (leastY := Gi ∧ cpre(greatestZ))
5. leastY := leastY ∨ cpre(leastY);
6. foreach (Aj)
7. fix (greatestX := V)
8. greatestX := least ∀ (¬Aj ∧ cpre(greatestX))
9. end // fix greatestX
10. x[Gi][cY][Aj] := greatestX;
11. leastY := leastY ∨ greatestX;
12. end // foreach A
13. y[Gi][cY] := leastY;
14. cY := cY + 1;
15. end // fix leastY
16. greatestZ := leastY;
17. end // foreach G
18. end // fix greatestZ
Construct the Realizing Machine

\[(\theta_e \land \Box \rho_e \land (\land_j \Box \Diamond A_j)) \rightarrow (\theta_s \land \Box \rho_s \land (\land_i \Box \Diamond G_i))\]

- Embed \(\theta_e, \rho_e, \theta_s,\) and \(\rho_s\) into \(G = \langle V, V_0, V_1, E, \varphi \rangle,\) where
 \[\varphi = (\land_j \Box \Diamond A_j) \rightarrow (\land_i \Box \Diamond G_i)\]

- Set let \(m = |\{G_i\}|\) and \(n = |\{A_i\}|.\)

- Construct a machine \(M\) realizing \(\varphi:\)

\[M = \langle 2^j, 2^o, 2^{j \cup o} \times [1..m] \cup \{s_0\}, \rho, s_0, L \rangle:\]

\[\rho(s_0, i) = \begin{cases} \theta_s & i \models \theta_e \\ T & i \models \neg \theta_e \end{cases}\]

\[\rho((i, o, l), i') = \begin{cases} (i', o', l \oplus 1) & (i, o) \in G_l \land (i', o') \in \text{win} \\ (i', o', l) & (i, o) \in y[G_l][cY] \land (i', o') \in y[G_l][< cY] \\ (i', o', l) & (i, o) \models \neg A_j \land (i, o) \in x[G_l][cY][A_j] \land \\ & (i', o') \in y[G_l][\leq cY][\leq A_j] \end{cases}\]
Optimizing Symbolic Runtime

Generalized Reactivity (1):
1. fix (greatestZ := \(V \))
2. foreach (\(G_i \))
3. \(cY := 0 \);
4. fix (leastY := \(G_i \land \text{cpre}(\text{greatestZ}) \))
5. leastY := leastY \lor \text{cpre}(\text{leastY})
6. foreach (\(A_j \))
7. fix (greatestX := y[\(G_i \)][maxprev])
8. greatestX := least \lor (\neg A_j \land \text{cpre}(\text{greatestX}))
9. end // fix greatestX
10. \(x[\(G_i \)][cY][A_j] := \text{greatestX} \)
11. leastY := leastY \lor greatestX
12. end // foreach A
13. \(y[\(G_i \)][cY] := \text{leastY} \)
14. \(cY := cY + 1 \);
15. end // fix leastY
16. greatestZ := leastY
17. end // foreach G
18. end // fix greatestZ
Back to the Arbiter

Environment:
• Initially:
 \[-r_1 \land \neg r_2\]
• Transition:
 \(\neg r_1 \land \neg g_1 \land \bigcirc r_1 \rightarrow (r_2 \leftrightarrow \bigcirc r_2)\) \lor
 \(r_1 \land g_1 \land \bigcirc \neg r_1 \rightarrow (r_2 \leftrightarrow \bigcirc r_2)\) \lor
 \(\neg r_2 \land \neg g_2 \land \bigcirc r_2 \rightarrow (r_1 \leftrightarrow \bigcirc r_1)\) \lor
 \(r_2 \land g_2 \land \bigcirc \neg r_2 \rightarrow (r_1 \leftrightarrow \bigcirc r_1)\) \lor
 \((r_1 \leftrightarrow \bigcirc r_1) \land (r_2 \leftrightarrow \bigcirc r_2)\)
• Good things:
 \(\Box \Diamond (\neg r_1 \lor \neg g_1) \land \Box \Diamond (\neg r_2 \lor \neg g_2)\)

System:
• Initially:
 \(\neg g_1 \land \neg g_2\)
• Transition:
 \((\neg g_1 \lor \neg g_2) \land
 \left((g_1 \neq \bigcirc r_1 \land (g_2 \leftrightarrow \bigcirc g_2)) \lor
 (g_2 \neq \bigcirc r_2 \land (g_1 \leftrightarrow \bigcirc g_1)) \lor
 (g_1 \leftrightarrow \bigcirc g_1) \land (g_2 \leftrightarrow \bigcirc g_2)\right)\)
• Good things:
 \(\Box \Diamond (g_1 = r_1) \land \Box \Diamond (g_2 = r_2)\)
Result of Synthesis
But why do you embed safety?

- We started from:
 \[(\theta_e \land \Box \rho_e \land (\land_j \Box \Diamond A_j)) \rightarrow (\theta_s \land \Box \rho_s \land (\land_i \Box \Diamond G_i))\]
- And ended up with:
 \[(\land_j \Box \Diamond A_j) \rightarrow (\land_i \Box \Diamond G_i)\]

with some modifications to permitted moves in \(2^{J \cup \emptyset}\).
- Are the two the same?
- **No!**
- What's the difference?
 - Realizability in our game implies realizability of the general formula.
 - Other direction is not true.
What we actually do

\[
(\theta_e \rightarrow \theta_s) \land (\theta_e \rightarrow \Box((\Box \rho_e) \rightarrow \rho_s)) \land (\theta_e \land \Box \rho_e \rightarrow ((\land j \Box \Diamond A_j) \rightarrow (\land i \Box \Diamond G_i))
\]

Lemma. If the above is realizable then the implication is realizable.

Consider a computation c satisfying the above. Then, c satisfies the implication as well.
1. If $c \models \theta_e$ then clearly c satisfies the implication.
2. If $c \models \Box \rho_e$ then clearly c satisfies the implication.
3. If $c \models (\land j \Box \Diamond A_j)$ then clearly c satisfies the implication.
4. If $c \models \theta_e$, $c \models \Box \rho_e$, and $c \models (\land j \Box \Diamond A_j)$ then from the first conjunct $c \models \theta_s$, from the second conjunct $c \models \Box \rho_s$, and from the third conjunct $c \models (\land j \Box \Diamond G_i)$.
What about the other direction?

Well, the other direction does not hold.

Example. Let x and y be Boolean input and output variables. Consider the specification:

$$(\square(\bigcirc x) \land \square \Diamond (x \leftrightarrow y)) \rightarrow (\square(\bigcirc x \leftrightarrow \bigcirc y) \land \square \Diamond \neg y)$$

It is clearly realizable (just set y to false ...).

But

$$((\square((\square \Box x) \rightarrow (\bigcirc x \leftrightarrow \bigcirc y)))$$

\[\square \bigcirc \square \Diamond \square \Diamond\]
Are such systems interesting?

- The only way to realize such a system is by violating the system’s safety requirement.
- The implication creates a dependency between the system’s safety and the environment’s liveness.
- Intuitively, the specification should not be realizable. But it is!
- Actually, the second one is more natural.
- They are different only if the environment can be forced to violate its specification.

- There is a way to handle the implication.
- It effectively reduces safety to liveness.
- Does not benefit from the embedding of the safety as transitions.
- Not going to cover.
What about saying more?

• The specification is composed of many parts. Conjunction on the left and conjunction on the right.
• What if some of these conjuncts are deterministic Buchi automata?
 – Everything should work the same!
 – Liveness added to the interested party.
Easy way to get Deterministic Buchi Automata

• The past is naturally deterministic.

\[\varphi ::= p \| \varphi \land \varphi \| \neg \varphi \| \lozenge \varphi \| \varphi S \varphi \]

• Automata for past formulas are deterministic and acceptance free.

• Given a past formula \(\psi \), \(\square \psi \), and \(\square \lozenge \psi \) are easily converted to deterministic Buchi automata.

• Examples:
 - \(\square (r \rightarrow \lozenge g) \equiv \square \lozenge \neg (\neg g S (\neg g \land r)) \)
 - \(\square (a \land \bigcirc b \rightarrow \bigcirc \bigcirc c) \equiv \square (\neg a \land b \rightarrow \bigcirc c) \)
 - \(\square (a \rightarrow a U b) \equiv \square \Box (a \rightarrow \bigcirc (a \lor b)) \land \square \lozenge (\neg a \lor b) \)
Some applications
AMBA Bus

- **Industrial** standard
- **ARM’s AMBA AHB bus**
 - High performance on-chip bus
 - Data, address, and control signals
 - Up to 16 masters and 16 clients
 - Arbiter part of bus (determines control signals)

From BGJPPW07
Generalized Buffer

- Tutorial model checking design from IBM.
- Parameterized buffer.
 - Transfer data from n senders to 2 receivers.
 - Senders arbitrary order.
 - Receivers round robin.
Valet Parking Without a Valet

David C. Conner, Hadas Kress-Gazit, Howie Choset, Alfred A. Rizzi, and George J. Pappas

Where’s Waldo?

Sensor-Based Temporal Logic Motion Planning

Hadas Kress-Gazit, Georgios E. Fainekos and George J. Pappas
Fig. 1. *Left.* Alice, Team Caltech’s entry in the 2007 DARPA Urban Challenge. *Right.* Alice’s planner-controller subsystem.
Bibliography

Lectures Outline

• Introduction
• Automata and Linear Temporal Logic
• Games and Synthesis
• General LTL Synthesis
• Bypassing Determinization
• Practical Issues with Synthesis
Is Implication the Right Thing?

• We’ve seen that

\[
(\theta_e \land \square \rho_e \land (\land_j \Box \Diamond A_j)) \rightarrow (\theta_s \land \square \rho_s \land (\land_i \Box \Diamond G_i))
\]

is handled by restricting permitted moves and solving

\[
(\land_j \Box \Diamond A_j) \rightarrow (\land_i \Box \Diamond G_i)
\]

Example. Let \(x\) and \(y\) be Boolean input and output variables. Consider the specification:

\[
(\Box(\Diamond x) \land \Box \Diamond (x \leftrightarrow y)) \rightarrow (\Box(\Diamond x \leftrightarrow \Diamond y) \land \Box \Diamond \neg y)
\]

It is clearly realizable (just set \(y\) to false …).

But

\[
\left(\left(\Box((\Box \Box \Box) \rightarrow (\Box x \leftrightarrow \Box y))\right) \land \Box \Diamond \Box \Diamond \Box \Diamond
\]

Games and Synthesis, EATCS Young Researchers School, Telč, Summer 2014
Compatible Environment

• An environment is **compatible** if it does not need help to fulfil the assumptions.

• Stated in games form:
 - **Remove** all obligations of the system.
 - Make sure it can win only by **forcing** environment to **lose**.

 \[
 (\theta_e \land \square \rho_e \land (\land_j \square \Diamond A_j)) \rightarrow (T \land \square T \land (\land_i \square \Diamond F))
 \]
 - Or the embedded version:

 \[
 (\theta_e \rightarrow T) \land (\theta_e \rightarrow \square ((\square \rho_e) \rightarrow T)) \land (\theta_e \land \square \rho_e \rightarrow ((\land_j \square \Diamond A_j) \rightarrow (\land_i \square \Diamond F)))
 \]
 - Both equivalent to:

 \[
 (\theta_e \land \square \rho_e \land (\land_j \square \Diamond A_j)) \rightarrow \square \Diamond F
 \]

• So we can use the same game settings. But:
 - The environment is **compatible** if from **every** state of the modified game the system **loses**.
 - For compatible environments the two are the **same**.
Compatibility \rightarrow Same

\[
(\theta_e \rightarrow \theta_s) \land (\theta_e \rightarrow \square((\square \rho_e \rightarrow \rho_s)) \land (\theta_e \land \square \rho_e \rightarrow ((\land_j \square \diamond A_j) \rightarrow (\land_i \square \diamond G_i)))
\]

• Suppose that you win for the game with implication but lose the embedded.
• The winning strategy in implication uses an unsafe transition.
• Once the unsafe transition is crossed, the environment has a strategy that shows compatibility.
• Using that strategy, the environment realizes

\[
\theta_e \land \square \rho_s \land \land_i \square \diamond A_i
\]

• But then the play satisfies:

\[
(\theta_e \land \square \rho_s \land \land_i \square \diamond A_i) \land (\square \neg \rho_e \lor \neg \theta_e)
\]
\[\square(\neg\text{overheated} \land (\text{moveToFelt} \Rightarrow \text{CookedTwice})) \land \square \lozenge \text{finishedCooking} \Rightarrow \square \lozenge \text{moveToFelt}\]
Good Features

• **Best Effort Controller:**
 – Will avoid assumptions if this is the only way to guarantee goals.

• **Assumption Preserving:**
 – Will only avoid assumptions if it is impossible to fulfill them.

• In compatible environments all possible controllers are both.
Abstracting Real Time

• **Discrete controllers** are augmented with **continuous controllers**.
• The **discrete** model does not capture **time** it takes to cross a transition.
• How to combine?
Direct Mapping

- **States** correspond to **world status**.
- A **change in state** corresponds to activation of continuous controller.
 - Sense for environment actions.
 - Upon change, activate “slow controllers”.
 - Upon completion of “slow controllers” activate “fast controllers”.
 - If something happens during execution of controller “change your mind.”
“Robot starts in region r1 with the camera off”
\[r_1 \land \neg \text{camera} \]

“Activate the camera if and only if you see a person”
\[\land \Box (\Diamond \text{person} \leftrightarrow \Diamond \text{camera}) \]

“Visit r2”
\[\land \Box \Diamond (\varphi_{r_2}) \]
Lecture 5: Practical Issues

Games and Synthesis, EATCS Young Researchers School, Telč, Summer 2014
Problems with Direct Mapping

- **Delayed response** to environment changes.
 - Fast actions wait until completion of slow actions.
- **Unsafe** continuous execution even though discrete controller is provably correct.
- **Fast actions first:**
 - Change synthesis algorithm to ensure safety:
 - Intermediate states in transitions.
 - OK to complete fast before slow?
 - **Committed** to a transition once part of it complete.
 - Unable to change your mind.
 - Even longer response time.
“Do not activate the camera in r1”

$$\Box(\neg(\pi_{\text{camera}} \land \pi_{r_1}))$$
Embedding “Actions”

- **Transitions** are **instantaneous** and **states** allow for **time pass** (timed automata ...).
- Robot **starts** all continuous controllers.
- Environment **terminates** them!
 - Every action needs a sensor for termination.
 - All controllers start immediately.
 - Controller active but not completed captured in the state.
- **Discrete model** captures the **passage** of time!
camera and motion to r_2 not activated
\[\neg \text{camera}, \neg r_2, \neg c_{\text{camera}}, \neg c_{r_2} \]
camera and motion activated, neither completed
\[\text{camera}, r_2, \neg c_{\text{camera}}, \neg c_{r_2} \]
camera completed (on), motion activated
\[\text{camera}, r_2, c_{\text{camera}}, \neg c_{r_2} \]
camera and motion both complete
\[\text{camera}, r_2, c_{\text{camera}}, c_{r_2} \]
Problems

• How to ensure continuous controllers terminate?
 – Fairness limiting environment.
 – Can be captured by extra state variables or ...
 – Allow transition fairness!
• Increased state space.
 – Mitigated by handling transition fairness in addition to state fairness.
Changing the Control Predecessor

For a set of transitions $R \subseteq V \times V$, define

$$cpre(R) = \{ v | \forall x \in 2^J . \exists y \in 2^O . (v, x \cup y) \in R \}$$

For a set of nodes W, define

$$next(W) = \{(v, w)|w \in W\}$$

Generalized Reactivity (1):

1. $\text{fix } (\text{greatestZ} := V)$
2. $\text{foreach } (G_i)$
3. $\text{fix } (\text{leastY} := G_i \land next(\text{greatestZ}))$
4. $\text{leastY} := \text{leastY} \lor next(\text{leastY})$
5. $\text{foreach } (A_j)$
6. $\text{fix } (\text{greatestX} := V)$
7. $\text{greatestX} := cpre(\text{least} \lor (\neg A_j \land next(\text{greatestX})))$
8. $\text{end } // \text{fix greatestX}$
9. $\text{leastY} := \text{leastY} \lor \text{greatestX}$
10. $\text{end } // \text{foreach } A$
11. $\text{end } // \text{fix leastY}$
12. $\text{greatestZ} := \text{leastY}$
13. $\text{end } // \text{foreach } G$
14. $\text{end } // \text{fix greatestZ}$
Advantages

- **Multiple scales** for continuous control time.
- **Abort** of action **explicitly** in the model!
- Environment changes leading to **hesitation** result in **unrealizability**!
Related Work / Open Problems

• Partial information [Chatterjee, ...].
• Stochastic elements [Chatterjee, Kucera, ...].
• Real time [Alur, Maler, Larsen, ...].
• SMT [Rybalchnko, ...].
• Distributed Synthesis [Finkbeiner, ...].
• Implication?? [Bloem, ...].
• Asynchronous synthesis [Pnueli, ...].
• Quantitative Objectives [Henzinger, Raskin, ...].
Summary

• Theoretical solution well known since 1969/1989.
• Still provides motivation for a lot of theoretical and practical work.
• In theory, theory and practice are the same.
• Thank you.
Bibliography